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Introduction

Cardiac arrhythmia due to blockade of potassium channels
coded by the human ether-a-go-go-related gene (hERG)[1] is a
major concern for both the pharmaceutical industry and
health regulatory agencies.[2–4] Since 1996, when terfena-
dine,[5,6] and later astemizole[7] and cisapride[8] were withdrawn
from the market, attention has been focused on optimizing
compounds in order to avoid prolonging the QT interval.[9] The
QT interval is defined as the time interval between the start of
the Q wave and the end of the T wave in the heart’s electric
cycle. As many drugs from different classes have been shown
to prolong the QT interval because of hERG blockade,[10] hERG
is considered to be a general anti-target.[11] It is now used as a
surrogate marker for cardiotoxicity. In lead structure optimiza-
tion, hERG blockade is tested early and monitored throughout
the drug-development process.[12]

The hERG gene and its product were discovered when the
genome of patients with inherited long QT syndrome (LQTS)
was analyzed. Patients with LQTS exhibit a significant predispo-
sition for cardiac arrhythmia of the torsades des pointes type.[13]

QT prolongation can in most cases be traced back to a muta-
tion in the hERG gene[14] that codes for the potassium channel
relevant for Ikr, the rapid delayed rectifier current.[15,16] Recently,
some other genes have been found for which mutations may
lead to QT prolongation. Among them are KCNQ1, the gene
that encodes the potassium channel relevant for Iks, a smaller
depolarizing K+ current, and SCN5A, the gene that encodes
the cardiac Na+ channel.[17,18] However, all clinically relevant
cases of drug-induced LQTS could be traced back to either
hERG blockade[19,20] or interference with hERG trafficking to the
cell surface.[21]

Cardiac polarization/repolarization is managed by different
ion channels. In brief, polarization is caused by sodium ions en-

tering the cell through specific sodium channels. This causes a
shift of the cell wall potential towards positive values. As soon
as a certain polarity has been reached, potassium channels
start to open up. Positively charged potassium ions flow out of
the cell, and depolarization is re-established. Neighboring volt-
age-dependent sodium channels also open up upon polariza-
tion, and the whole excitation process moves along the sur-
face. There are more types of ion channels involved in the reg-
ulation of the excitation process, but the amount of charge
that they transfer is comparatively small.

Most of the charge transferred in the repolarization phase is
transferred via the potassium channel coded for by the hERG
gene. Upon blockade, the action potential will rest longer,
which results in an increased duration of the relative QT inter-
val that can be observed in electrocardiograph (ECG) traces.

Disturbing the QT interval may lead to instability in the
heart rhythm because all the electric potentials in the complex
concert of the heartbeat are very finely adjusted. Torsades de
pointes, a disordered uncontrolled excitation of cells in the
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hERG blockade is one of the major toxicological problems in lead
structure optimization. Reliable ligand-based in silico models for
predicting hERG blockade therefore have considerable potential
for saving time and money, as patch-clamp measurements are
very expensive and no crystal structures of the hERG-encoded
channel are available. Herein we present a predictive QSAR
model for hERG blockade that differentiates between specific and
nonspecific binding. Specific binders are identified by preliminary
pharmacophore scanning. In addition to descriptor-based models
for the compounds selected as hitting one of two different phar-
macophores, we also use a model for nonspecific binding that re-

produces blocking properties of molecules that do not fit either
of the two pharmacophores. PLS and SVR models based on inter-
pretable quantum mechanically derived descriptors on a litera-
ture dataset of 113 molecules reach overall R2 values between
0.60 and 0.70 for independent validation sets and R2 values be-
tween 0.39 and 0.76 after partitioning according to the pharma-
cophore search for the test sets. Our findings suggest that hERG
blockade may occur through different types of binding, so that
several different models may be necessary to assess hERG toxici-
ty.
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heart muscle, may occur. This cacophony of excitations pre-
vents the heart from functioning properly and may lead to
lethal ventricular fibrillation.

Biochemical details

The protein channel responsible for Ikr is a tetramer that con-
sists of four identical subunits coded for by the hERG gene. As
is the case for most transmembrane proteins, the hERG chan-
nel has so far resisted attempts to obtain an X-ray or NMR
structure. Several homology models[9,22, 23] based on the crystal
structure of potassium channels from bacterial cell walls[24–28]

have been published.

Important structural features

The homology models reported are all in agreement that a
large cavity at the inner end of the pore with an estimated di-
ameter of up to 12 H, depending on the conformation, is an
important feature of the hERG channel.[23] This pore is able to
accommodate a wide range of structurally diverse compounds.

Mutagenesis and alanine-scanning studies have revealed the
important roles of several amino acids.[29–34] Phe656 and
Tyr652 have been identified as very important binding part-
ners for almost all compounds tested[29] apart from metopro-
lol.[35] Additionally, depending on the compound, one or more
of the amino acids Ser624, Thr623, Val625, Gly648, and Val650
are necessary for binding. In all homology models and docking
studies published,[22,23,36–38] the side chains of Phe656, Tyr652,
Ser624, Thr623, and Val625 point towards the inside of the
pore. A schematic view of the hERG channel is shown in
Figure 1.

Because of its nature as a switchable gating channel, the
hERG channel can be present in various forms: open, closed,

inactivated, and probably some additional intermediate states.
The promiscuous nature of the hERG channel suggests that
there must be many different binding motifs and geometries,
each suited to individual ligands or groups of ligands.

Published models

Because hERG is a very important anti-target that has caused
withdrawal of several high-selling drugs from the market,
many groups have published theoretical studies on hERG
blockade.

Descriptor-based QSAR

Since 2002, when the first ligand-based hERG blockade QSAR
study was published by Roche et al. ,[39] much attention has
been paid to establishing QSAR models for hERG blockade.
Many public and commercially available descriptor sets have
been used to model hERG IC50 values. Models based on 2D de-
scriptors provided by MOE[40] and TSAR,[41] Ghose–Crippen, Kier
& Hall topological indices, Isis-Keys, atom pair, electrotopologi-
cal state descriptors,[42] molecular fingerprints, and molecular
fragments have been published.[43–46] A large variety of statisti-
cal methods has also been used; self-organizing maps
(SOMs),[39] multiple linear regression (MLR), partial least squares
(PLS), logistic regression,[47] support vector machines (SVMs),
Bayesian classifiers, and decision-tree algorithms. However, the
resulting models can seldom be compared directly because
they were built using different datasets. Usually, models based
on proprietary unpublished datasets have better R2 values
than those based on publicly available datasets.[44] The bench-
mark of serious published-data-based QSAR studies that use
nonlinear relationships is around R2 =0.70.[48]

Pharmacophore models and 3D QSAR

Cavalli et al.[49] were the first to publish a hERG pharmacophore
that resulted from a comparative molecular field analysis
(CoMFA) study in 2002. Since then, further pharmacophore
studies have been published, including comparative molecular
similarity indices (CoMSIA)[9] and other 3D QSAR[50] studies on
hERG activity prediction.[51] All pharmacophores published so
far include some common features: a positively ionizable nitro-
gen feature in the center and two or three hydrophobic–aro-
matic or hydrophobic features on the periphery, distributed
tetragonally around the nitrogen. Aronov recently published a
pharmacophore for hERG blockers based on proprietary data
that does not contain the positively ionizable nitrogen.[52] The
most active molecule known in the literature without the nitro-
gen feature is ketoconazole, with IC50 =1.9 mm. Leong recently
published a pharmacophore ensemble/SVM model for hERG in-
hibition with R2 values >0.90 for a test set of 13 molecules.[53]

Herein we present a regression study of modeling hERG
blockade. We have used quantum mechanically derived values
of local properties on the molecular surface, shape and charge
autocorrelation descriptors, and some basic 1D and 2D de-
scriptors. The PLS and e-support vector regression (e-SVR) algo-

Figure 1. Schematic representation of the hERG channel, displaying only
two of the four subunits. For simplicity, only the selectivity filter and the S6
and pore helices are shown. Important residues are shown in stick represen-
tation. The extracellular side is indicated at the top. The picture was generat-
ed from a homology model of the closed hERG channel (template: KcsA,
PDB entry: 1K4C).
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rithms were used to build the regression models. These tech-
niques facilitate the interpretation of important descriptors
and provide highly predictive models for the test sets.

We first describe novel descriptors that are relevant for pre-
dicting hERG blockade. However, we also describe a method of
combining pharmacophores and traditional descriptor-based
QSAR that subdivides compounds into specific and unspecific
blockers. Composite regression models reach R2y values for the
literature dataset that are equal to R2 values of previously pub-
lished PLS models. Further composite models give insight into
patterns that are relevant for hERG binding for different sub-
groups of compounds available from the literature.

Results and Discussion

For all the compounds collected from the literature and puri-
fied for contingency and comparability, we calculated a set of
descriptors based on quantum mechanical properties. They
represent statistical variables that describe the distribution of
the local molecular electrostatic potential (MEP), the local ioni-
zation energy (IEL), the local electron affinity (EAL), the local
polarizability (POL), as well as external and internal Shannon
entropies (SHANE, SHANI). The local properties projected onto
the surface of cisapride are shown in Figure 2. Furthermore,

shape and charge autocorrelation descriptors and some other
basic descriptors were calculated (see the Experimental Section
below for a complete list and data preparation). Based on
these descriptors we generated regression models.

Model 1

The best averaged R2y value for the test sets after 20-fold
random cross-validation was obtained using the e-SVR algo-
rithm, a polynomial kernel of degree 2, and multiple linear re-
gression (MLR)-based descriptor selection. A validation set that
was partitioned off before training is predicted with R2y, root-

mean-squared error (RMSE) and mean-unsigned error (MUE)
values similar to the cross-validation results. A plot of mea-
sured vs. predicted pIC50 values including standard deviations
is shown in Figure 3. MLR descriptor selection yielded seven
descriptors: EALmax, EALmin, POLmin, SHANIbar, Naryl,
shapeQ2 and shapeQ4.

e-SVR models are more accurate than PLS models, as mea-
sured by R2, because nonlinear relationships between the de-
scriptors are included. Model 1 shows that it is possible to ach-
ieve statistical values similar to the best literature-data-based
models published so far with the descriptors used in this
study. However, because it is easier to interpret a PLS model
than an e-SVR model, we focus our attention on PLS models
for the analysis of important descriptors.

Model 2: most significant descriptors, conservative descriptor
selection

In order to analyze the significance of different descriptors, the
inclusion criterion for descriptors in the stepwise MLR proce-
dure, the F value, was changed. It was defined in such a way
that only relevant descriptors are included following an ap-
proach suggested by Martyn Ford and inspired by Livingstone
and Salt.[54] The procedure was repeated for each of the 20
training sets. Shape, EALmin, and Naryl were always selected
as descriptors under this stricter inclusion criterion. Other de-
scriptors were only included once or never. This suggests that
only shape, Naryl, and EALmin are really significant. Mean R2y
values for the 20 models of all test/training set splits built with
shape, Naryl, and EALmin are R2y ACHTUNGTRENNUNG(train)=0.59 and R2y ACHTUNGTRENNUNG(test)=
0.57. In adding squares and cubes of the three descriptors and
executing the same procedure, only shape2 and shape3 are
always selected. We built PLS models for all 20 test/training set

Figure 2. Projection of local properties to the surface of cisapride: a) MEP,
b) IEL, c) EAL, d) POL; blue= low values, green=mean values, red=high
values.

Figure 3. Mean measured and predicted pIC50 values for the training, test,
and validation set for the MLR descriptor set including standard deviation
(e-SVR model, polynomial kernel of degree 2, split according to pIC50 bins) ;
*= test and training set, &=validation set. Mean R2y ACHTUNGTRENNUNG(train)=0.81, N =75;
mean R2yACHTUNGTRENNUNG(test)=0.68, N =23; mean RMSE train&test=0.50; mean MUE
train&test=0.37, N =98; mean R2y(validation)=0.70; mean RMSE valida-
tion=0.74; mean MUE validation=0.55, N =15.
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splits. Measured and predicted pIC50 values are plotted in
Figure 4.

Naryl indicates the number of aromatic rings present. It
enters all 20 regression equations with a positive sign, suggest-
ing that hERG blockade potency increases with the number of
aromatic rings. The shape descriptor indicates the similarity of
the molecular shape to astemizole, cisapride, and sertindole. It
is calculated as an autocorrelation graph of surface points and
compared with the corresponding graph of the target mole-
cules. All three shape descriptors enter the equations with pos-
itive signs, suggesting that the more similar the shape of the
compounds from this dataset to those of the most active com-
pounds, the lower their observed IC50 values. EALmin is an un-
expected descriptor, as all the EAL descriptors are related to in-
teractions in which the molecule acts as an electron acceptor.
If donor–acceptor interactions in which the substrate is the ac-
ceptor play a significant role, one would expect EALmax to
appear. More positive EALmax values indicate a strong capacity
to undergo electron-accepting interactions, as in hydrogen
bonding, for example. EALmin enters the regression equation
with a positive sign, suggesting that the more negative the
minimum electron affinity, the fewer molecules tend to block
hERG. Areas of the most negative local electron affinity are
often located over carbonyl groups, if present (see Figure 2c,
blue area). Over the whole dataset, EALmin covers a range of
approximately �150 to �100 kcalmol�1. Areas of low local
electron affinity associated with carbonyls lie between approxi-
mately �150 to �120, compared with �125 to �100 for com-
pounds without carbonyl groups. It is known that carbonyls
reduce the hERG affinity.[55] Thus, we tried replacing the
EALmin descriptor with a 1/0 descriptor for the presence/ab-
sence of carbonyl groups. However, this descriptor was never

selected in the MLR approach for any of the 20 training sets.
Thus, EALmin apparently represents a descriptor that enables
us to go one step deeper into the analysis of carbonyls for
hERG blockade by describing the exact electronic nature of the
carbonyl more precisely.

Pharmacophore-driven models

When we compared models 1 and 2 (and other models that
are not shown), we observed that four potent hERG blockers
were always predicted to have far lower pIC50 values: sertin-
dole analogue SA15,[9] clemastine, tolterodine, and haloperidol.
All four have high measured and lower predicted pIC50 values,
and are shown in Figure 5.

The first three molecules have fairly clear similar chemical
structures, whereas haloperidol is not obviously similar. As
they all have very high pIC50 values, most of their molecular
features probably participate in binding. A pharmacophore
model (in the following denoted as “pharmacophore 1”)
shown in Figure 6 was constructed from these compounds.
Haloperidol fits into this pharmacophore in a U-shaped confor-
mation to give a fairly high internal Catalyst fit value of 2.96
(with each of the features ranked one in case of a perfect over-
lap).

As only 113 compounds were available for regression
models, we decided to analyze the pharmacophores using the
whole set to include as much information as possible. Because
of the small number of data openly available, patterns found
here must be validated properly with independent validation
sets as soon as more data become available. In the following,
we use the phrase test set in place of validation set, as the set
of compounds not used in training is no longer strictly com-
pletely independent of the model-building procedure; it has
already seen the pharmacophore built from outliers of the pri-

Figure 4. Mean measured and predicted pIC50 values for the training, test,
and validation set for the conservatively selected descriptor set including
standard deviation (PLS model : shape, EALmin, Naryl, shape2, and shape3 de-
scriptors, split according to pIC50 bins) ; *= test and training set, &=valida-
tion set. Mean R2y ACHTUNGTRENNUNG(train)=0.64, N =75; mean R2y ACHTUNGTRENNUNG(test)=0.61, N =23; mean
RMSE(train&test)=0.68; mean MUE(train&test)=0.52, N =98; mean
R2y(validation)=0.62; mean RMSE(validation)=0.79; mean MUE(valida-
tion)=0.63, N =15.

Figure 5. Consistent outliers in the general models.
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mary models. For the following models, we included Clog P as
a further descriptor, because it is known that lipophilicity plays
a role in hERG binding.[47]

Model 3.1: unspecific binding, pharmacophore non-hitters

Pharmacophore 1 represents a subgroup of previously pub-
lished pharmacophores, a minimum pharmacophore for hERG
blockade. We overlaid the whole set of 113 molecules with
pharmacophore 1; 51 compounds hit the pharmacophore, 62
compounds did not. Molecules that hit the pharmacophore
have, on average, higher pIC50 values than those that do not.
For creating a new model, 30% of the compounds that did
not hit the pharmacophore were partitioned off randomly to
form a test set. A PLS model was built for the corresponding
training and test sets using the MLR_Opt feature-selection al-
gorithm on the training set.

Only EALmin, Naryl, shape, and shapeQ2 entered the QSAR
equation of model 3.1. This is a noteworthy result, as we ex-
pected many more descriptors to enter this model. Moreover,
compounds from this group seem to be dominant in deter-
mining model 2 described above for the entire dataset.

For the molecules that hit pharmacophore 1, a test set was
split off, and a PLS model was generated. However, this model
performed poorly relative to that for the molecules that did
not hit the pharmacophore (details not shown). There is no
significant dependence between hERG blockade and descrip-
tors in this descriptor and compound set.

To include more specific knowledge about the hERG recep-
tor, we built a second pharmacophore from astemizole, cisapr-
ide, flunarizine, and sertindole. These compounds show the
lowest IC50 values published. Thus, a pharmacophore derived
from them can be expected to illustrate the spatial distribution
of important features. All of the compounds hit pharmaco-
phore 1. The sertindole analogues from the study of Pearlstein
et al. ,[9] which also have high pIC50 values, were excluded in
order to avoid overemphasis of the influence of the sertindole
scaffold. This procedure yields a pharmacophore that is very

similar to pharmacophore 1. Instead of a hydrophobic feature
in close proximity to an aromatic hydrophobic hot spot, it con-
tains a hydrophobic feature that is almost collinear with the
positive nitrogen atom and the other hydrophobic feature.
This model is, for instance, very similar to that published by
Cavalli et al.[49] Pharmacophore 2 and compounds from which
it was built are shown in Figure 7.

Model 3.2: specific binding type 2, pharmacophore 2

In order to differentiate between molecules that hit the mini-
mum pharmacophore and those that hit this more specific
pharmacophore, the whole dataset was searched with pharma-
cophore 2; 20 compounds hit each feature of the pharmaco-
phore, and 17 of these compounds also hit each feature of
pharmacophore 1. Six of these 20 compounds were selected
randomly as test set. A PLS model was created based on the
remaining 14 compounds as training set. Descriptors selected

Figure 6. Pharmacophore 1 with docked tolterodine; red=positively ioniza-
ble nitrogen, blue=aromatic hydrophobic feature, turquoise=hydrophobic
feature.

Figure 7. a) Pharmacophore 2 with docked flunarizine; red=positively ioniz-
able nitrogen, blue=aromatic hydrophobic feature, turquoise=hydrophobic
feature; b) strongest hERG blockers reported.
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for this model with the MLR_Opt approach are globularity,
POLmin, SHANIbar, SHANIvar and Ndon. Molecules that display
all the features of pharmacophore 2 have an average pIC50 of
7.11.

Model 3.3: specific binding type 1, pharmacophore 1

From the residual set of 34 molecules that hit pharmaco-
phore 1 but not pharmacophore 2, 11 were split off randomly
as a test set. A PLS model from the 23 training set molecules
was generated using the MLR_Opt feature selection; esHBac,
VppQ2, and Clog P were selected as relevant descriptors.

A plot of measured vs. predicted pIC50 values for the whole
dataset after partitioning according to pharmacophores (i.e.
using models 3.1–3.3 according to whether the compound hits
either none or at least one of the pharmacophores 1 or 2) is
shown in Figure 8. Statistical measures for models 1 and 3 are

summarized in Table 1. A flow
chart of the procedure of split-
ting according to pharmaco-
phore hits is shown in Figure 9.

Model 4: most significant de-
scriptors of composite models

To analyze the significance of
different descriptors for each in-
dividual sub-model, the inclusion
criterion for descriptors, the F
value, in the stepwise MLR pro-
cedure was changed as for

model 2. For each model, F =10 turned out to be a good ex-
clusion criterion for any random descriptor. All three subsets
were randomly split into 70% training and 30% test data 20
times. The stepwise MLR procedure was carried out up to five
times with exclusion of previously selected descriptors for each
of the 60 training sets.

Model 4.1

For the 20 training sets of the group of compounds that do
not hit any pharmacophore, EALmin, Naryl, shape, and
shapeQ2 were identified as significant because they were se-
lected between 16 and 20 times. Shape is more than 90% cor-
related (R2) with shapeQ2. As we later generated PLS models
designed to circumvent the multi-collinearity problem, both
were used. EALbar and EALbar� were also selected 18 and 19
times, respectively. However, in 90% of the cases they were se-
lected after EALmin, which is correlated between 60–80% with
EALbar and EALbar�. Thus, we reasoned that EALmin is a
better descriptor for this dataset than EALbar or EALbar� and
excluded the last two. Whereas shape and shapeQ2 were se-
lected with equal frequency, shapeQ1, which is also highly cor-
related (R2>0.9) with shape and shapeQ2, is selected after
shape and shapeQ2 in all but one case. Thus, shapeQ1 was ex-
cluded. All other descriptors were selected far less frequently.
The final set of relevant descriptors here is EALmin, Naryl,
shape, and shapeQ2.

Figure 8. Overall measured and predicted pIC50 values for the training and
test set for the MLR_Opt descriptor set, calculated according to pharmaco-
phore hits (PLS model : complete prediction, random splits) ; != test set
non-hitters, ~= training set non-hitters, *= training set pharmacophore 1
hitters, *= test set pharmacophore 1 hitters, *= training set pharmaco-
phore 2 hitters, *= test set pharmacophore 2 hitters. R2y ACHTUNGTRENNUNG(train)=0.82, RMSE-
ACHTUNGTRENNUNG(train)=0.45, MUE ACHTUNGTRENNUNG(train)=0.35, N =79; R2y ACHTUNGTRENNUNG(test)=0.72, RMSE ACHTUNGTRENNUNG(test)=0.61,
MUE ACHTUNGTRENNUNG(test)=0.49, N =34.

Table 1. Statistical properties for the composite PLS models.

Model 3.1
No Pharmacophore

Model 3.2
Pharmacophore 2

Model 3.3
Pharmacophore 1

Model 1
General Model

Descriptors EALmin, Naryl,
shape, shapeQ2

POLmin, SHANIbar,
SHANIvar, Ndon

esHBac, VppQ2m,
Clog P

EALmax, EALmin,
POLmin, SHANIbar,

Naryl, shapeQ2,
shapeQ4

R2y training 0.74 0.90 0.63 0.81
validation 0.69 0.79 0.64 0.68/0.70

RMSE training 0.43 0.34 0.57 0.50
validation 0.51 0.57 0.77 0.74

MUE training 0.34 0.21 0.44 0.37
validation 0.41 0.48 0.63 0.55

N 59 20 34 113

Figure 9. Flowchart of the composite model.
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Model 4.2

For the 20 training sets of pharmacophore 2 hitters, QsumH
was selected 19 times, and Ndon and POLmin were selected
17 times. All the other descriptors were selected far less fre-
quently.

Model 4.3

For the 20 training sets of compounds that hit exclusively
pharmacophore 1, only Clog P turned out to be significant, as
it was selected 19 of 20 times in the first step of MLR analysis.
All other descriptors were selected only up to eight times.

For all the 60 sets, PLS models based on the relevant de-
scriptors were built. The mean model performances including
the validation set predictions are summarized in Table 2.

We have investigated descriptor-based QSAR equations with
and without partitioning according to two different pharmaco-
phores. We find that partitioning improves the predictivity of
the overall hERG model, although this in itself is not surprising,
as we have generated three local QSAR equations out of one
general equation. The literature indicates that hERG channel
blockers can be accommodated in different binding modes
within the pore.[9,23,30,49, 56] It is tempting to interpret our com-
posite model as reflecting three different binding modes. This
is a dangerous conclusion because it rests entirely on the im-
proved fitting obtained with the composite model. We have,
for instance, identified three compounds (ajmaline, amsacrine,
and domperidone) that fall in our nonspecific model, but are
known[57–59] to cause QT prolongation. Any conclusions based
on the assignment of a given model are therefore untenable
at the moment. This is, however, partly because the biological
data on the compounds that actually cause QT prolongation
are not available. We can hope that once such data become
available, our model can be connected to physiological effects,
but this is currently not possible. Therefore, we consider the
improved performance of a composite consisting of three dif-
ferent models as no more than a hint towards three different

types of binding, two of which exhibit individual sets of impor-
tant pharmacophoric features, and the third, less specific bind-
ing that depends only on shape, and not specific pharmaco-
phoric features. However, our composite model fits well into
the spirit of ensemble-based systems in decision making[60]

and can claim some physical justification because of the
known tendency of hERG toward multiple binding modes. The
use of pharmacophores as selection tools for descriptor-based
models avoids the need for scoring functions, with all their as-
sociated problems.

Specific binding type 2 (Pharmacophore 2, Model 3.2/4.2)

The best-known hERG binding pattern consists of one positive-
ly ionizable feature and three aromatic hydrophobic features
in the periphery around the positive center. Cavalli et al. ,[49]

Pearlstein et al. ,[9] and Ekins
et al.[50] have all described this
feature previously. In our
model 3.2, all molecules that ex-
hibit all these features could be
predicted very accurately with
the first component of a PLS
model, giving an R2y value
around 0.80. Once all pharmaco-
phore features are present, hERG
blockade depends on the mini-
mum of the local polarizability,
which is usually associated with
the most positively charged hy-
drogen atom, the sum of the
electrostatic potential on all hy-
drogen atoms, and the number
of H-bond donors, as demon-
strated in model 4, which only

uses the most significant descriptors. EALmin and the number
of H-bond donors are clearly related to the strength and
number of H-bonds, respectively, in which the substrate is the
donor. In all 20 PLS models there is only one vector that con-
tains all three descriptors with almost equal loadings after
mean centering and adjusting the standard deviation to one.

The number of H-bond donors correlates negatively with
pIC50, which may indicate that the desolvation penalty for H-
bond donors cannot be compensated by any of the H-bond-
accepting features of the hERG channel associated with this
type of specific binding. For this set of compounds we found
neither Clog P nor any of the initial descriptors to be signifi-
cantly correlated with the pIC50 of hERG blockade.

Specific binding type 1 (Pharmacophore 1, Model 3.3/4.3)

Roughly 50% of the total dataset hit pharmacophore 1. This
pharmacophore consists of one positively ionizable feature,
one hydrophobic feature, and one aromatic hydrophobic fea-
ture with a hydrophobic feature in close proximity. The ar-
rangement is very similar to parts of pharmacophore 2, but
pharmacophore 2 has one less hydrophobic feature. Seventeen

Table 2. Mean statistical properties for PLS composite and general models with conservative descriptor selec-
tion.

Model 4.1
No Pharmacophore

Model 4.2
Pharmacophore 2

Model 4.3
Pharmacophore 1

Model 4.1–4.3
All[a]

Model 2
General Model[b]

Descriptors EALmin, Naryl,
shape, shapeQ2

Ndon, QsumH,
POLmin

Clog P Dependent on
type of
binding

EALmin, Naryl,
shape, shape2,

shape3

R2y training 0.74 0.84 0.41
0.67

0.63
test 0.66 0.76 0.39 0.62

RMSE training 0.46 0.40 0.80
0.56

0.68
test 0.49 0.46 0.83 0.79

MUE training 0.35 0.29 0.61
0.43

0.52
test 0.40 0.38 0.67 0.63

N training 42 14 24 80 98
test 17 6 10 33 15

[a] Test set values only (from 20-fold cross-validation). [b] Training set+ test set= training, validation set= test.
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of 20 molecules that hit pharmacophore 2 also hit pharmaco-
phore 1. A separate PLS model was built for all the molecules
that hit pharmacophore 1 exclusively. In the single test–train-
ing set split, we found Clog P, esHBac, and VppQ2 for this set.
In the conservative descriptor selection of model 4, we only
found Clog P to be significant for this set. It enters the model
with a positive coefficient, indicating that increased lipophilici-
ty will lead to an increased hERG blockade for compounds
from this group.

In a docking study, Farid et al.[23] found a completely differ-
ent orientation for SA15 inside the pore relative to sertindole.
This finding is consistent with the two binding types suggest-
ed by this study.

Nonspecific binding (Non-hitters, Model 3.1/4.1)

A third PLS model was built for the remaining molecules that
do not hit either of the two pharmacophores. Descriptors for
this model are EALmin, Naryl, shape, and shapeQ2, selected by
both the MLR_Opt selection algorithm and the conservative
descriptor selection of model 6. Using only these four descrip-
tors, around 70% of the variation in pIC50 values can be ex-
plained. The PLS equation for model 3.1 after mean centering
and adjusting the standard deviation to one is given below.

pIC50 unspecific ¼ 6:51þ 0:52 EALminþ 0:32 Naryl

þ0:33 shapeþ 0:29 shapeQ2
ð1Þ

We interpret this model as being appropriate for molecules
that bind nonspecifically to the hERG channel. The model
probably covers a wide range of different binding modes and
perhaps several binding sites as well. This type of binding can
perhaps be compared with binding to serum protein and
should be amenable to a nonspecific, QSPR-like model.[61] How-
ever, some indications can be found that the model does
relate specifically to hERG. High shape similarity to the most
active compounds astemizole, cisapride, and sertindole leads
to an increase in the calculated hERG-blocking effect. Further-
more, the number of aromatic rings and the minimum of the
electron affinity have an effect on hERG blockade properties.
These descriptors are consistent with the idea of an unspecific
binding mode of some hERG blockers that depends more on
hydrophobic and van der Waals interactions than any specific
binding features. This nonspecific binding model applies to
compounds that have a lower effect on hERG blockade than
specific binders (those that hit one of the two pharmaco-
phores). All compounds from the pharmacophore groups are
predicted to have lower or similar pIC50 values by the unspecif-
ic model than by the appropriate specific model. Nonspecific
binding probably occurs throughout the part of the pore that
is directed toward the interior of the cell. Experimentally, at
least 28 (7Q4) amino acids in the pore can contribute to
ligand binding (see “Important structural features” above). The
descriptors for the QSAR model of unspecific binders reflect
this situation.

Alternative pharmacophores

The pharmacophores identified herein are very similar to those
proposed in previous studies. It has been suggested earli-
er[29,30,33] that the aromatic and hydrophobic interactions prob-
ably take place with Phe656 and Tyr652. The role of the posi-
tively ionizable nitrogen is not yet clear. It has been suggested
that it undergoes cation–p interactions with Tyr652.[9,44,50, 56]

Recently, Farid et al. found that by docking potent hERG block-
ers into the open form of the channel, the ionizable nitrogen
atoms are too far away from Tyr652 to make reasonable con-
tributions to the binding energy.[23] Despite the lack of a clear
role, the ionizable nitrogen is an important feature of almost
all high-affinity pharmacophores that have been described in
the literature. However, Aronov recently described a pharma-
cophore for hERG blockers without the positively ionizable ni-
trogen feature.[52] We were unable to find compounds with
very high reported hERG pIC50 values that hit this pharmaco-
phore. The highest IC50 value that was published for a neutral
compound is 1.9 mm for ketoconazole. Thus, it is not necessary
to consider this pharmacophore in our work because the cor-
responding compounds would be assigned to the group of
unspecific binders.

Conclusions

We have presented a composite model for hERG blockade that
differentiates between nonspecific binding and two types of
specific binding. The prediction quality of this model exceeds
that of our own general models, leading to a flow chart of
how the pharmacophore and QSAR models can be applied in
practice.

We used predominantly the ParaSurf[62] set of descriptors,
which consists of quantum mechanically derived descriptors
based on surface properties, with additional basic 1D and 2D
descriptors. These descriptors have proven to be appropriate
for the final QSAR models and provide some insight into the
key molecular features that drive hERG blocking potential in
each of the subgroups.

The technique of partitioning compounds according to a
pharmacophore comparison and then partitioning the dataset
for a series of individual descriptor-based QSAR equations rep-
resents a useful alternative to pharmacophore similarities, scor-
ing functions, etc. , for all problems in which multiple binding
modes may play a role, that is, for promiscuous targets such as
hERG or cytochromes P450. More data for hERG blockers may
reveal further pharmacophores, which will then give some
more specific QSAR equations.

Experimental Section

Data collection

All publicly available hERG blockade IC50 data were collected in
June 2006. Fenichel’s list,[63] previously published papers, and
PubMed[64] were used as starting points for data collection. IC50

values were collected only if at least an abstract of the original
work was available. Personally communicated values were exclud-
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ed. IC50 values were collected from
the original publications to ensure
the highest possible quality of the
dataset and to avoid transcription
errors. This procedure gave 345 ex-
perimental values for 206 com-
pounds.

Data preparation

For model generation, only meas-
urements on hERG channels cloned
into human embryonic kidney
(HEK-293) and Chinese hamster
ovary (CHO) cells were used to
ensure consistency in the dataset.
Measurements on other mammali-
an cell lines such as Cercopithecus
aethiops (COS-7) and atrial tumor
(AT-1) were excluded. Measure-
ments on Xenopus oocytes (XO)
were excluded. It is well known
that measurements on XO yield
IC50 values that are on average 12-
fold greater than those measured
on mammalian cell lines, because
XO membranes are more lipophilic
than those of CHO and HEK-293
cells.[56] Measurements on Purkinje
fibers were excluded because these
native cells differ even more from
HEK-293 and CHO cells than other
mammalian cell lines.

A radioligand replacement method
was introduced for medium- to
high-throughput determination of
hERG inhibition. [3H]Dofetilide[65] or
[3H]astemizole[66] are replaced com-
petitively from mammalian cells
that overexpress hERG channels.
However, this is not a functional
test, and not every compound that
replaces dofetilide must necessarily
exhibit the same blocking proper-
ties. Furthermore, as the pore is
quite large, some compounds
could bind allosterically to dofeti-
lide. We have therefore not consid-
ered these measurements in as-
sembling our dataset.

Our literature study revealed that
some published fits of the Hill
equation[67] for high-range IC50

values are not statistically signifi-
cant[68] (see oleandomycin). Hence,
we reviewed all reported IC50

values greater than 20 mm. We con-
sidered at least one measured con-
centration above 75% inhibition to
be necessary for the IC50 value to
be included. This 75% criterion
should ensure reliable fitting.

Table 3. Descriptors used in this study.

Molecular Electrostatic Potential Descriptors[73]

Vmax (MEPmax) Maximum (most positive) MEP value
Vmin (MEPmin) Minimum (most negative) MEP value
V+ ACHTUNGTRENNUNG(mean) (meanMEP+ ) Mean of the positive MEP values
V� ACHTUNGTRENNUNG(mean) (meanMEP�) Mean of the negative MEP values
VACHTUNGTRENNUNG(mean) (meanMEP) Mean of all MEP values
DV (MEP-range) MEP range
s2

+ (MEPvar+ ) Total variance in the positive MEP values
s2
� (MEPvar�) Total variance in the negative MEP values

s2
tot (MEPvartot) Total variance in the MEP

n (MEPbalance) MEP balance parameter
s2

totn (var_balance) Product of the total variance in the MEP and the MEP parameter

Local Ionization Energy Descriptors[73]

IEL
max (IELmax) Maximum value of the local ionization energy

IEL
min (IELmin) Minimum value of the local ionization energy

IELACHTUNGTRENNUNG(mean) (IELbar) Mean value of the local ionization energy
DIEL (IEL-range) Range of the local ionization energy
s2

IE (IELvar) Variance of the local ionization energy

Local Electron Affinity Descriptors[73]

EAL
max (EALmax) Maximum of the local electron affinity

EAL
min (EALmin) Minimum of the local electron affinity

EAL+ ACHTUNGTRENNUNG(mean) (EALbar+ ) Mean of the positive values of the local electron affinity
EAL� ACHTUNGTRENNUNG(mean) (EALbar�) Mean of the negative values of the local electron affinity
EALACHTUNGTRENNUNG(mean) (EALbar) Mean value of the local electron affinity
DEAL (EAL-range) Range of the local electron affinity
s2

EA+ (EALvar+ ) Variance in the local electron affinity for all positive values
s2

EA� (EALvar�) Variance in the local electron affinity for all negative values
s2

EAtot (EALvartot) Sum of the positive and negative variances in the local electron affinity
nEA (EALbalance) Local electron affinity balance parameter
dA+

EA (EALfraction+ ) Fraction of the surface area with positive local electron affinity

Mean Local Electronegativity[73]

cL ACHTUNGTRENNUNG(mean) (ENEGbar) Mean value of the local electronegativity

Local Polarizability Descriptors[73]

aL
max (POLmax) Maximum value of the local polarizability

aL
min (POLmin) Minimum value of the local polarizability

aLACHTUNGTRENNUNG(mean) (POLbar) Mean value of the local polarizability
DaL (POL-range) Range of the local polarizability
s2

a (POLvar) Variance in the local polarizability

Shannon Entropy Descriptors[72]

Hint
max (SHANImax) Maximum value of the internal Shannon entropy

Hext
max (SHANEmax) Maximum value of the external Shannon entropy

Hint
min (SHANImin) Minimum value of the internal Shannon entropy

Hext
min (SHANEmax) Minimum value of the external Shannon entropy

Hint ACHTUNGTRENNUNG(mean) (SHANIbar) Mean value of the internal Shannon entropy
Hext ACHTUNGTRENNUNG(mean) (SHANEbar) Mean value of the external Shannon entropy
sint

2 (SHANIvar) Variance in the internal Shannon entropy
sext

2 (SHANEvar) Variance in the external Shannon entropy
Hint

mol (SHANItot) Internal molecular Shannon entropy
Hext

mol (SHANEtot) External molecular Shannon entropy

Autocorrelation Descriptors[a]

shape Shape autocorrelation
shapeQ ACHTUNGTRENNUNG(1-4) Shape autocorrelation for quartal 1–4

(2.5–4.36 H; 4.42–6.28 H; 6.34–8.2 H; 8.26–10.12 H)
Vpp Plus–plus MEP autocorrelation
VppQ ACHTUNGTRENNUNG(1–4) Plus–plus MEP autocorrelation for quartal 1–4
Vmm Minus-minus MEP autocorrelation
VmmQ ACHTUNGTRENNUNG(1–4) Minus–minus MEP autocorrelation for quartal 1–4
Vpm Plus–minus MEP autocorrelation
VpmQ ACHTUNGTRENNUNG(1–4) Plus–minus MEP autocorrelation for quartal 1–4
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For our regression models, only compounds with an exact report-
ed IC50 value were used. All calculations used pIC50 values.

4-Aminopyridine and chlorobutanol were excluded from the data-
set because of their extremely small size. Metoprolol was excluded
because it has been shown that, in contrast to all other com-
pounds tested, it does not lose binding affinity when Phe656 or
Tyr652 are mutated.[35] It must therefore bind in a different mode
than the other compounds. For compounds with multiple IC50

values, the mean IC50 value was used if pIC50max�pIC50min<1; other-
wise the compounds were excluded.

Overall, we obtained 113 compounds that spanned a range from
about pIC50 =3.7 to pIC50 =9. The complete dataset is listed in the
Supporting Information.

The dataset was split into training, test, and validation sets. First,
the compounds were partitioned into six pIC50 bins of equal range,
from which a validation set of 15 compounds was selected ran-
domly. The pIC50 distribution of the validation set was thus similar
to that of the whole set. From the remaining 98 compounds, test
sets of 23 compounds with distributions similar to that of the 98
compounds were picked randomly out of the pIC50 bins. The
random selection was repeated 20 times.

Descriptor calculation

All calculations were performed with the uncharged forms of the
molecules, because charges in an unknown binding mode inside
an unknown binding pocket cannot be inferred from charges ap-
propriate to physiological pH and because protonatable nitrogen
atoms are directly exchangeable for protonated ones within QSAR
and pharmacophore models. After generating 3D coordinates with
CORINA,[69] the structures were optimized in the gas phase with

AM1.[70,71] From the resulting geo-
metries, statistical variables that
describe the distribution of the
local molecular electrostatic poten-
tial (MEP), the local ionization
energy (IEL), the local electron af-
finity (EAL), the local polarizability
(POL), as well as external and inter-
nal Shannon entropies[72] (SHANI,
SHANE) on the molecular surface
were calculated.[73] Furthermore,
shape and charge surface autocor-
relations and some basic 1D and
2D descriptors were calculated. Al-
together this gave a set of 99 de-
scriptors, which is listed in Table 3.
All descriptors were calculated
using the program ParaSurf’06.[62]

For later refinements after pharma-
cophore subdivision, Clog P[74] was
added.

Statistical modeling

MLR calculations were performed
with TSAR 3.3.[41] For PLS analysis
we used SIMCA P-11.[77] LibSVM[78]

was used for the e-SVR computa-
tions. e-SVR parameters were de-
termined during 50 steps of a sim-
plex optimization of the cross-vali-

dation performance.[79] This procedure is more efficient than a sys-
tematic grid search. Pharmacophore modeling and searching was
done with Catalyst.[80]

Descriptor selection

Descriptors of model 1 were selected based on the 98-membered
training and test set after removal of the validation set. Descriptors
of models 3.1–3.3 were selected based on the corresponding train-
ing sets. Two different algorithms were used. In the first approach,
descriptors were selected by stepwise MLR based on the whole de-
scriptor set. In a second approach, the stepwise MLR algorithm
was refined. Stepwise MLR only extracts one set of descriptors and
always follows the steepest gradient. It does not necessarily extract
the best set of descriptors. Thus, we ran three MLRs, each time re-
moving the previously selected descriptors from the initial set.
From the combined set of all descriptors selected by MLR and
their squares, we excluded those that lowered or did not change
R2

cv in PLS models. This procedure yielded the optimized MLR set of
descriptors (MLR_Opt). Unsupervised forward selection (UFS),[81] a
formal inference-based recursive modeling (FIRM)[82–84] decision
tree implemented in TSAR 3.3, and variable influence on projection
(VIP) statistics in PLS models were also investigated as alternative
approaches to select descriptors. However, the resulting models
performed similarly or worse than the models described, and thus
are not discussed further herein.

Pharmacophore generation

Pharmacophores 1 and 2 were generated using default Catalyst pa-
rameters (Catalyst 4.10).[80]

Table 3. (Continued)

Additional Descriptors
m (dipole) Dipole moment
mD (dipden) Dipolar density
A (polarizability) Molecular electronic polarizability
Mw Molecular weight
G (globularity) Globularity
A (totalarea) Molecular surface area
VOL (volume) Molecular volume
Qsum Sum of the VESPA[75] electrostatic potential on all (N, O, P, S, F, Cl, Br, I, H,

hal) atoms
Estate Analogous to the Kier & Hall Estate[76] using the bond order between

atom i and j instead of the distance
Estate2 Analogous to the Kier & Hall Estate using rij to describe the distance be-

tween atom i and j
LocPol Local polarity: all absolute deviations from the mean ESP for each sur-

face point summed up and divided by the number of surface points
CovHBac Covalent hydrogen bond acidity: EHOMO ACHTUNGTRENNUNG(molecule)�ELUMO ACHTUNGTRENNUNG(water)
CovHBbas Covalent hydrogen bond basicity : ELUMO ACHTUNGTRENNUNG(molecule)�EHOMO ACHTUNGTRENNUNG(water)
esHBac Electrostatic hydrogen bond acidity : most negative formal charge (mole-

cule)�most positive formal charge (water)
esHBbas Electrostatic hydrogen bond basicity: most positive formal charge on hy-

drogen (molecule)�most negative formal charge (water)
CohIndex Cohesive index: (NaccQNdon0.5)/total surface
Nacc Number of H-bond acceptors
Ndon Number of H-bond donors
Naryl Number of aromatic rings
Clog P Calculated octanol/water distribution coefficient (using MOE[45])

[a] Autocorrelation similarities were calculated as described in the ParaSurf’06 manual.[62] Astemizole, cisapride,
and sertindole were used as reference points because they show the highest hERG blockade.
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